Computer >> Máy Tính >  >> Lập trình >> Lập trình

Vấn đề về Word Wrap


Một dãy từ được đưa ra, có giới hạn về số ký tự cho mỗi dòng. Bằng cách đặt dấu ngắt dòng, sao cho các dòng được in rõ ràng.

Các dòng phải cân đối, khi một số dòng có nhiều khoảng trắng thừa và một số dòng chứa một số khoảng thừa nhỏ, nó sẽ cân bằng chúng thành các dòng riêng biệt. Nó cố gắng sử dụng cùng một số khoảng trắng để làm cho chúng cân bằng.

Thuật toán này sẽ tạo ra bao nhiêu từ có thể được đặt trong một dòng và cần bao nhiêu dòng.

Đầu vào và Đầu ra

Input:
The length of words for each line. {3, 2, 2, 5}. The max width is 6.
Output:
Line number 1: Word Number: 1 to 1 (only one word)
Line number 2: Word Number: 2 to 3 (Second and 3rd word)
Line number 3: Word Number: 4 to 4 (4th word)

Thuật toán

wordWrap(wordLenArr, size, maxWidth)

Đầu vào - Mảng độ dài từ, kích thước của mảng và chiều rộng tối đa của từ.

Đầu ra - Danh sách bao nhiêu từ sẽ đặt trên mỗi dòng.

Begin
   define two square matrix extraSpace and lineCost of order (size + 1)
   define two array totalCost and solution of size (size + 1)

   for i := 1 to size, do
      extraSpace[i, i] := maxWidth – wordLenArr[i - 1]
      for j := i+1 to size, do
         extraSpace[i, j] := extraSpace[i, j-1] – wordLenArr[j - 1] - 1
      done
   done

   for i := 1 to size, do
      for j := i+1 to size, do
         if extraSpace[i, j] < 0, then
            lineCost[i, j] = ∞
         else if j = size and extraSpace[i, j] >= 0, then
            lineCost[i, j] := 0
         else
            linCost[i, j] := extraSpace[i, j]^2
      done
   done

   totalCost[0] := 0
   for j := 1 to size, do
      totalCost[j] := ∞
      for i := 1 to j, do
         if totalCost[i-1] ≠∞ and linCost[i, j] ≠ ∞ and
            (totalCost[i-1] + lineCost[i,j] < totalCost[j]), then
            totalCost[i – 1] := totalCost[i – 1] + lineCost[i, j]
            solution[j] := i
      done
   done
   display the solution matrix
End

Ví dụ

#include<iostream>
using namespace std;

int dispSolution (int solution[], int size) {
   int k;
   if (solution[size] == 1)
      k = 1;
   else
      k = dispSolution (solution, solution[size]-1) + 1;
   cout << "Line number "<< k << ": Word Number: " <<solution[size]<<" to "<< size << endl;
   return k;
}

void wordWrap(int wordLenArr[], int size, int maxWidth) {
   int extraSpace[size+1][size+1];
   int lineCost[size+1][size+1];
   int totalCost[size+1];
   int solution[size+1];

   for(int i = 1; i<=size; i++) {    //find extra space for all lines
      extraSpace[i][i] = maxWidth - wordLenArr[i-1];

      for(int j = i+1; j<=size; j++) {    //extra space when word i to j are in single line
         extraSpace[i][j] = extraSpace[i][j-1] - wordLenArr[j-1] - 1;
      }
   }

   for (int i = 1; i <= size; i++) {    //find line cost for previously created extra spaces array

      for (int j = i; j <= size; j++) {

         if (extraSpace[i][j] < 0)
            lineCost[i][j] = INT_MAX;
         else if (j == size && extraSpace[i][j] >= 0)
            lineCost[i][j] = 0;
         else
            lineCost[i][j] = extraSpace[i][j]*extraSpace[i][j];
      }
   }

   totalCost[0] = 0;
   for (int j = 1; j <= size; j++) {    //find minimum cost for words
      totalCost[j] = INT_MAX;

      for (int i = 1; i <= j; i++) {
         if (totalCost[i-1] != INT_MAX && lineCost[i][j] != INT_MAX && (totalCost[i-1] + lineCost[i][j] < totalCost[j])){
            totalCost[j] = totalCost[i-1] + lineCost[i][j];
            solution[j] = i;
         }
      }
   }

   dispSolution(solution, size);
}

main() {
   int wordLenArr[] = {3, 2, 2, 5};
   int n = 4;
   int maxWidth = 6;
   wordWrap (wordLenArr, n, maxWidth);
}

Đầu ra

Line number 1: Word Number: 1 to 1
Line number 2: Word Number: 2 to 3
Line number 3: Word Number: 4 to 4