Sắp xếp theo topo của DAG (Đồ thị vòng có hướng) là một thứ tự tuyến tính của các đỉnh sao cho mọi cạnh có hướng uv, trong đó đỉnh u đến trước v theo thứ tự. Nếu biểu đồ không phải là DAG, thì không thể sắp xếp theo cấu trúc liên kết cho biểu đồ.
Hàm và mã giả
Begin function topologicalSort(): a) Mark the current node as visited. b) Recur for all the vertices adjacent to this vertex. c) Push current vertex to stack which stores result. End Begin function topoSort() which uses recursive topological sort() function: a) Mark all the vertices which are not visited. b) Call the function topologicalSort(). c) Print the content. End
Ví dụ
#include<iostream> #include <list> #include <stack> using namespace std; class G { int n; list<int> *adj; //declaration of functions void topologicalSort(int v, bool visited[], stack<int> &Stack); public: G(int n); //constructor void addEd(int v, int w); void topoSort(); }; G::G(int n) { this->n = n; adj = new list<int> [n]; } void G::addEd(int v, int w) // add the edges to the graph. { adj[v].push_back(w); //add w to v’s list } void G::topologicalSort(int v, bool visited[], stack<int> &Stack) { visited[v] = true; //mark current node as visited list<int>::iterator i; //Recur for all the vertices adjacent to this vertex. for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) topologicalSort(*i, visited, Stack); Stack.push(v); } void G::topoSort() { stack<int> Stack; bool *visited = new bool[n]; //Mark all the vertices which are not visited. for (int i = 0; i < n; i++) visited[i] = false; for (int i = 0; i < n; i++) if (visited[i] == false) //Call the function topologicalSort(). topologicalSort(i, visited, Stack); while (Stack.empty() == false) { cout << Stack.top() << " "; //print the element Stack.pop(); } } int main() { G g(6); g.addEd(4, 2); g.addEd(5, 1); g.addEd(4, 0); g.addEd(3, 1); g.addEd(1, 3); g.addEd(3, 2); cout << " Topological Sort of the given graph \n"; g.topoSort(); return 0; }
Đầu ra
Topological Sort of the given graph 5 4 1 3 2 0