Computer >> Máy Tính >  >> Lập trình >> C ++

Chương trình C ++ để kiểm tra khả năng kết nối của đồ thị được hướng bằng BFS

Để kiểm tra khả năng kết nối của một biểu đồ, chúng tôi sẽ cố gắng duyệt qua tất cả các nút bằng bất kỳ thuật toán duyệt nào. Sau khi hoàn thành việc truyền tải, nếu có bất kỳ nút nào không được truy cập, thì biểu đồ không được kết nối.

Chương trình C ++ để kiểm tra khả năng kết nối của đồ thị được hướng bằng BFS

Đối với biểu đồ được định hướng, chúng tôi sẽ bắt đầu duyệt từ tất cả các nút để kiểm tra kết nối. Đôi khi một cạnh có thể có cạnh ngoài duy nhất nhưng không có cạnh trong, vì vậy nút đó sẽ không được truy cập từ bất kỳ nút bắt đầu nào khác.

Trong trường hợp này, thuật toán truyền tải là thuật toán truyền tải BFS đệ quy.

Đầu vào - Ma trận kề của đồ thị

0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0

Đầu ra - Biểu đồ được kết nối.

Thuật toán

traverse (s, đã truy cập)

Đầu vào :Nút bắt đầu s và nút đã truy cập để đánh dấu nút nào được truy cập.

Đầu ra :Đi ngang qua tất cả các đỉnh được kết nối.

Begin
   mark s as visited
   insert s into a queue Q
   until the Q is not empty, do
   u = node that is taken out from the queue
   for each node v of the graph, do
      if the u and v are connected, then
         if u is not visited, then
            mark u as visited
         insert u into the queue Q.
      done
   done
End

isConnected (đồ thị)

Đầu vào - Biểu đồ.

Đầu ra - Đúng nếu biểu đồ được kết nối.

Begin
   define visited array
   for all vertices u in the graph, do
      make all nodes unvisited
   traverse(u, visited)
   if any unvisited node is still remaining, then
      return false
   done
   return true
End

Mã mẫu

#include<iostream>
#include<queue>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {
   {0, 1, 0, 0, 0},
   {0, 0, 1, 0, 0},
   {0, 0, 0, 1, 1},
   {1, 0, 0, 0, 0},
   {0, 1, 0, 0, 0}};
void traverse(int s, bool visited[]) {
   visited[s] = true; //mark v as visited
   queue<int> que;
   que.push(s);//insert s into queue
   while(!que.empty()) {
      int u = que.front(); //delete from queue and print
      que.pop();
      for(int i = 0; i < NODE; i++) {
         if(graph[i][u]) {
            //when the node is non-visited
            if(!visited[i]) {
               visited[i] = true;
               que.push(i);
            }
         }
      }
   }
}
bool isConnected() {
   bool *vis = new bool[NODE];
   //for all vertex u as start point, check whether all nodes are visible or not
   for(int u; u < NODE; u++) {
      for(int i = 0; i < NODE; i++)
         vis[i] = false; //initialize as no node is visited
         traverse(u, vis);
      for(int i = 0; i < NODE; i++) {
         if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
            return false;
      }
   }
   return true;
}
int main() {
   if(isConnected())
      cout << "The Graph is connected.";
   else
      cout << "The Graph is not connected.";
}

Đầu ra

The Graph is connected.