Computer >> Máy Tính >  >> Lập trình >> Python

Tạo ma trận Pseudo Vandermonde của đa thức Hermite_e và mảng điểm động x, y, z trong Python

Để tạo ma trận Vandermonde giả của đa thức Hermite_e và các điểm mẫu x, y, z, hãy sử dụng hermite_e.hermevander3d () trong Python Numpy. Phương thức này trả về pseudoVandermondematrix. Tham số, x, y, z là các mảng tọa độ điểm, tất cả đều có cùng hình dạng. Các kiểu sẽ được chuyển đổi thành float64 hoặc complex128 tùy thuộc vào việc bất kỳ phần tử nào có phức tạp hay không. Vô hướng được chuyển đổi thành mảng 1-D. Tham số, deg là danh sách các độ tối đa của dạng [x_deg, y_deg, z_deg].

Các bước

Đầu tiên, hãy nhập thư viện được yêu cầu -

import numpy as np
from numpy.polynomial import hermite_e as H

Tạo các mảng tọa độ điểm, tất cả đều có cùng hình dạng bằng cách sử dụng phương thức numpy.array () -

x = np.array([1.5, 2.3])
y = np.array([3.7, 4.4])
z = np.array([5.3, 6.6])

Hiển thị các mảng -

print("Array1...\n",x)
print("\nArray2...\n",y)
print("\nArray3...\n",z)

Hiển thị kiểu dữ liệu -

print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
print("\nArray3 datatype...\n",z.dtype)

Kiểm tra Kích thước của cả hai mảng -

print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
print("\nDimensions of Array3...\n",z.ndim)

Kiểm tra Hình dạng của cả hai mảng -

print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
print("\nShape of Array3...\n",z.shape)

Để tạo ma trận Vandermonde giả của đa thức Hermite_e và các điểm mẫu x, y, z, hãy sử dụng hermite_e.hermevander3d () trong Python -

x_deg, y_deg, z_deg = 2, 3, 4
print("\nResult...\n",H.hermevander3d(x,y,z, [x_deg, y_deg, z_deg]))

Ví dụ

import numpy as np
from numpy.polynomial import hermite_e as H

# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([1.5, 2.3])
y = np.array([3.7, 4.4])
z = np.array([5.3, 6.6])

# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
print("\nArray3...\n",z)

# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
print("\nArray3 datatype...\n",z.dtype)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
print("\nDimensions of Array3...\n",z.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
print("\nShape of Array3...\n",z.shape)

# To generate a pseudo Vandermonde matrix of the Hermite_e polynomial and x, y, z sample points, use the hermite_e.hermevander3d() in Python Numpy
x_deg, y_deg, z_deg = 2, 3, 4
print("\nResult...\n",H.hermevander3d(x,y,z, [x_deg, y_deg, z_deg]))

Đầu ra

Array1...
   [1.5 2.3]

Array2...
   [3.7 4.4]

Array3...
   [5.3 6.6]

Array1 datatype...
float64

Array2 datatype...
float64

Array3 datatype...
float64

Dimensions of Array1...
1

Dimensions of Array2...
1

Dimensions of Array3...
1

Shape of Array1...
(2,)

Shape of Array2...
(2,)

Shape of Array3...
(2,)

Result...
   [[1.00000000e+00 5.30000000e+00 2.70900000e+01 1.32977000e+02
     6.23508100e+02 3.70000000e+00 1.96100000e+01 1.00233000e+02
     4.92014900e+02 2.30697997e+03 1.26900000e+01 6.72570000e+01
     3.43772100e+02 1.68747813e+03 7.91231779e+03 3.95530000e+01
     2.09630900e+02 1.07149077e+03 5.25963928e+03 2.46616159e+04
     1.50000000e+00 7.95000000e+00 4.06350000e+01 1.99465500e+02
     9.35262150e+02 5.55000000e+00 2.94150000e+01 1.50349500e+02
     7.38022350e+02 3.46046996e+03 1.90350000e+01 1.00885500e+02
     5.15658150e+02 2.53121720e+03 1.18684767e+04 5.93295000e+01
     3.14446350e+02 1.60723616e+03 7.88945892e+03 3.69924238e+04
     1.25000000e+00 6.62500000e+00 3.38625000e+01 1.66221250e+02
     7.79385125e+02 4.62500000e+00 2.45125000e+01 1.25291250e+02
     6.15018625e+02 2.88372496e+03 1.58625000e+01 8.40712500e+01
     4.29715125e+02 2.10934766e+03 9.89039724e+03 4.94412500e+01
     2.62038625e+02 1.33936346e+03 6.57454910e+03 3.08270198e+04]
    [1.00000000e+00 6.60000000e+00 4.25600000e+01 2.67696000e+02
     1.63911360e+03 4.40000000e+00 2.90400000e+01 1.87264000e+02
     1.17786240e+03 7.21209984e+03 1.83600000e+01 1.21176000e+02
     7.81401600e+02 4.91489856e+03 3.00941257e+04 7.19840000e+01
     4.75094400e+02 3.06363904e+03 1.92698289e+04 1.17989953e+05
     2.30000000e+00 1.51800000e+01 9.78880000e+01 6.15700800e+02
     3.76996128e+03 1.01200000e+01 6.67920000e+01 4.30707200e+02
     2.70908352e+03 1.65878296e+04 4.22280000e+01 2.78704800e+02
     1.79722368e+03 1.13042667e+04 6.92164891e+04 1.65563200e+02
     1.09271712e+03 7.04636979e+03 4.43206064e+04 2.71376893e+05
     4.29000000e+00 2.83140000e+01 1.82582400e+02 1.14841584e+03
     7.03179734e+03 1.88760000e+01 1.24581600e+02 8.03362560e+02
     5.05302970e+03 3.09399083e+04 7.87644000e+01 5.19845040e+02
     3.35221286e+03 2.10849148e+04 1.29103799e+05 3.08811360e+02
     2.03815498e+03 1.31430115e+04 8.26675658e+04 5.06176900e+05]]