Đường dẫn Euler là một đường dẫn mà chúng ta có thể ghé thăm mọi cạnh chính xác một lần. Chúng ta có thể sử dụng các đỉnh giống nhau cho nhiều lần. Euler Circuit là một loại đường dẫn Euler đặc biệt. Khi đỉnh bắt đầu của đường Euler cũng được nối với đỉnh kết thúc của đường dẫn đó, thì nó được gọi là Mạch Euler.
Để phát hiện đường dẫn và mạch, chúng ta phải tuân theo các điều kiện sau -
- Biểu đồ phải được kết nối với nhau.
- Khi chính xác hai đỉnh có bậc lẻ thì đó là Đường Euler.
- Bây giờ, khi không có đỉnh nào của đồ thị vô hướng có bậc lẻ, thì đó là Mạch Euler.
Đầu vào và Đầu ra
Input: Adjacency matrix of a graph. 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 Output: The graph has an Eulerian path.
Thuật toán
đi ngang (u, đã ghé thăm)
Đầu vào: Nút bắt đầu u và nút đã truy cập để đánh dấu nút nào được truy cập.
Đầu ra - Đi ngang qua tất cả các đỉnh được kết nối.
Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End
isConnected (đồ thị)
Đầu vào - Biểu đồ.
Đầu ra - Đúng nếu biểu đồ được kết nối.
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
isEulerian (Biểu đồ)
Đầu vào - Biểu đồ đã cho.
Đầu ra - Trả về 0, khi không phải Eulerian, 1 khi nó có đường Euler, 2 khi tìm thấy mạch Euler
Begin if isConnected() is false, then return false define list of degree for each node oddDegree := 0 for all vertex i in the graph, do for all vertex j which are connected with i, do increase degree done if degree of vertex i is odd, then increase dooDegree done if oddDegree > 2, then return 0 if oddDegree = 0, then return 2 else return 1 End
Ví dụ
#include<iostream> #include<vector> #define NODE 5 using namespace std; int graph[NODE][NODE] = { {0, 1, 1, 1, 0}, {1, 0, 1, 0, 0}, {1, 1, 0, 0, 0}, {1, 0, 0, 0, 1}, {0, 0, 0, 1, 0} }; /* int graph[NODE][NODE] = { {0, 1, 1, 1, 1}, {1, 0, 1, 0, 0}, {1, 1, 0, 0, 0}, {1, 0, 0, 0, 1}, {1, 0, 0, 1, 0} }; */ //uncomment to check Euler Circuit /* int graph[NODE][NODE] = { {0, 1, 1, 1, 0}, {1, 0, 1, 1, 0}, {1, 1, 0, 0, 0}, {1, 1, 0, 0, 1}, {0, 0, 0, 1, 0} }; */ //Uncomment to check Non Eulerian Graph void traverse(int u, bool visited[]) { visited[u] = true; //mark v as visited for(int v = 0; v<NODE; v++) { if(graph[u][v]) { if(!visited[v]) traverse(v, visited); } } } bool isConnected() { bool *vis = new bool[NODE]; //for all vertex u as start point, check whether all nodes are visible or not for(int u; u < NODE; u++) { for(int i = 0; i<NODE; i++) vis[i] = false; //initialize as no node is visited traverse(u, vis); for(int i = 0; i<NODE; i++) { if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected return false; } } return true; } int isEulerian() { if(isConnected() == false) //when graph is not connected return 0; vector<int> degree(NODE, 0); int oddDegree = 0; for(int i = 0; i<NODE; i++) { for(int j = 0; j<NODE; j++) { if(graph[i][j]) degree[i]++; //increase degree, when connected edge found } if(degree[i] % 2 != 0) //when degree of vertices are odd oddDegree++; //count odd degree vertices } if(oddDegree > 2) //when vertices with odd degree greater than 2 return 0; return (oddDegree)?1:2; //when oddDegree is 0, it is Euler circuit, and when 2, it is Euler path } int main() { int check; check = isEulerian(); switch(check) { case 0: cout << "The graph is not an Eulerian graph."; break; case 1: cout << "The graph has an Eulerian path."; break; case 2: cout << "The graph has a Eulerian circuit."; break; } }
Đầu ra
The graph has an Eulerian path.