Computer >> Máy Tính >  >> Lập trình >> Lập trình

Con đường và vòng đua Eulerian


Đường dẫn Euler là một đường dẫn mà chúng ta có thể ghé thăm mọi cạnh chính xác một lần. Chúng ta có thể sử dụng các đỉnh giống nhau cho nhiều lần. Euler Circuit là một loại đường dẫn Euler đặc biệt. Khi đỉnh bắt đầu của đường Euler cũng được nối với đỉnh kết thúc của đường dẫn đó, thì nó được gọi là Mạch Euler.

Con đường và vòng đua Eulerian

Để phát hiện đường dẫn và mạch, chúng ta phải tuân theo các điều kiện sau -

  • Biểu đồ phải được kết nối với nhau.
  • Khi chính xác hai đỉnh có bậc lẻ thì đó là Đường Euler.
  • Bây giờ, khi không có đỉnh nào của đồ thị vô hướng có bậc lẻ, thì đó là Mạch Euler.

Đầu vào và Đầu ra

Input:
Adjacency matrix of a graph.
0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
0 0 0 1 0

Output:
The graph has an Eulerian path.

Thuật toán

đi ngang (u, đã ghé thăm)

Đầu vào: Nút bắt đầu u và nút đã truy cập để đánh dấu nút nào được truy cập.

Đầu ra - Đi ngang qua tất cả các đỉnh được kết nối.

Begin
   mark u as visited
   for all vertex v, if it is adjacent with u, do
      if v is not visited, then
         traverse(v, visited)
   done
End

isConnected (đồ thị)

Đầu vào - Biểu đồ.

Đầu ra - Đúng nếu biểu đồ được kết nối.

Begin
   define visited array
   for all vertices u in the graph, do
      make all nodes unvisited
      traverse(u, visited)
      if any unvisited node is still remaining, then
         return false
   done
   return true
End

isEulerian (Biểu đồ)

Đầu vào - Biểu đồ đã cho.

Đầu ra - Trả về 0, khi không phải Eulerian, 1 khi nó có đường Euler, 2 khi tìm thấy mạch Euler

Begin
   if isConnected() is false, then
      return false
   define list of degree for each node
   oddDegree := 0

   for all vertex i in the graph, do
      for all vertex j which are connected with i, do
         increase degree
      done
      if degree of vertex i is odd, then
         increase dooDegree
   done

   if oddDegree > 2, then
      return 0
   if oddDegree = 0, then
      return 2
   else
      return 1
End

Ví dụ

#include<iostream>
#include<vector>
#define NODE 5
using namespace std;

int graph[NODE][NODE] = {
   {0, 1, 1, 1, 0},
   {1, 0, 1, 0, 0},
   {1, 1, 0, 0, 0},
   {1, 0, 0, 0, 1},
   {0, 0, 0, 1, 0}
};
                               
/* int graph[NODE][NODE] = {
   {0, 1, 1, 1, 1},
   {1, 0, 1, 0, 0},
   {1, 1, 0, 0, 0},
   {1, 0, 0, 0, 1},
   {1, 0, 0, 1, 0}
};
*/    //uncomment to check Euler Circuit
                               
/* int graph[NODE][NODE] = {
   {0, 1, 1, 1, 0},
   {1, 0, 1, 1, 0},
   {1, 1, 0, 0, 0},
   {1, 1, 0, 0, 1},
   {0, 0, 0, 1, 0}
};
*/    //Uncomment to check Non Eulerian Graph
               
void traverse(int u, bool visited[]) {
   visited[u] = true;    //mark v as visited

   for(int v = 0; v<NODE; v++) {
      if(graph[u][v]) {
         if(!visited[v])
            traverse(v, visited);
      }
   }
}

bool isConnected() {
   bool *vis = new bool[NODE];
   //for all vertex u as start point, check whether all nodes are visible or not
   for(int u; u < NODE; u++) {
      for(int i = 0; i<NODE; i++)
         vis[i] = false;    //initialize as no node is visited
               
      traverse(u, vis);
         
      for(int i = 0; i<NODE; i++) {
         if(!vis[i])    //if there is a node, not visited by traversal, graph is not connected
            return false;
      }
   }
   return true;
}

int isEulerian() {
   if(isConnected() == false)    //when graph is not connected
      return 0;
   vector<int> degree(NODE, 0);
   int oddDegree = 0;

   for(int i = 0; i<NODE; i++) {
      for(int j = 0; j<NODE; j++) {
         if(graph[i][j])
            degree[i]++;    //increase degree, when connected edge found
      }

      if(degree[i] % 2 != 0)    //when degree of vertices are odd
         oddDegree++; //count odd degree vertices
   }

   if(oddDegree > 2)    //when vertices with odd degree greater than 2
      return 0;
         
   return (oddDegree)?1:2;    //when oddDegree is 0, it is Euler circuit, and when 2, it is Euler path
}

int main() {
   int check;
   check = isEulerian();

   switch(check) {
      case 0: cout << "The graph is not an Eulerian graph.";
         break;
      case 1: cout << "The graph has an Eulerian path.";
         break;
      case 2: cout << "The graph has a Eulerian circuit.";
         break;
   }
}

Đầu ra

The graph has an Eulerian path.