Computer >> Máy Tính >  >> Lập trình >> Python

Lấy các ô vuông nhỏ nhất của chuỗi Hermite_e phù hợp với dữ liệu bằng Python

Để đưa các ô vuông nhỏ nhất của chuỗi Hermite_e phù hợp với dữ liệu, hãy sử dụng phương thức hermite_e.hermfit () trongPython numpy. Phương thức này trả về các hệ số Hermite_e được sắp xếp từ thấp đến cao. Nếu y là 2-D, các hệ số cho dữ liệu trong cột k của y nằm trong cột k. Tham số, x là tọa độ x của M điểm (dữ liệu) mẫu (x [i], y [i]).

Tham số y là tọa độ y của các điểm mẫu. Một số tập hợp các điểm mẫu có cùng tọa độ x có thể phù hợp (độc lập) với một lệnh gọi đến polyfit bằng cách chuyển cho y một 2-Darray chứa một tập dữ liệu trên mỗi cột. Tham số, deg là (các) độ của các đa thức phù hợp. Nếu deg là một số nguyên duy nhất, tất cả các số hạng lên đến và bao gồm cả số hạng thứ sẽ được đưa vào phù hợp. Tham số, rcond là số điều kiện tương đối của sự phù hợp. Các giá trị số ít nhỏ hơn cond, liên quan đến giá trị số ít lớn nhất, sẽ bị bỏ qua. Giá trị mặc định là len (x) * eps, trong đó ,eps là độ chính xác tương đối của kiểu float của nền tảng, khoảng 2e-16 trong hầu hết các trường hợp.

Tham số, đầy đủ là công tắc xác định bản chất của giá trị trả về. Khi False (mặc định) chỉ các hệ số được trả về; khi True, thông tin chẩn đoán từ phân khúc có giá trị số ít cũng được trả về. Tham số, w là trọng số. Nếu không Không, trọng số w [i] áp dụng cho phần dư chưa được kiểm tra y [i] - y_hat [i] tại x [i]. Lý tưởng nhất là các trọng số được chọn sao cho sai số của các sản phẩm w [i] * y [i] đều có cùng phương sai. Khi sử dụng trọng số phương sai nghịch đảo, hãy sử dụng w [i] =1 / sigma (y [i]). Giá trị mặc định là Không.

Các bước

Đầu tiên, hãy nhập thư viện được yêu cầu -

import numpy as np
from numpy.polynomial import hermite_e as H

Tọa độ x -

x = np.linspace(-1,1,51)

Hiển thị tọa độ x -

print("X Co-ordinate...\n",x)

Tọa độ y -

y = x**3 - x + np.random.randn(len(x))
print("\nY Co-ordinate...\n",y)

Để đưa các hình vuông nhỏ nhất của chuỗi Hermite_e phù hợp với dữ liệu, hãy sử dụng phương thức hermite_e.hermfit () inPython -

c, stats = H.hermefit(x,y,3,full=True)
print("\nResult...\n",c)
print("\nResult...\n",stats)

Ví dụ

import numpy as np
from numpy.polynomial import hermite_e as H

# The x-coordinate
x = np.linspace(-1,1,51)

# Display the x-coordinate
print("X Co-ordinate...\n",x)

# The y-coordinate
y = x**3 - x + np.random.randn(len(x))
print("\nY Co-ordinate...\n",y)

# To get the Least squares fit of Hermite_e series to data, use the hermite_e.hermfit() method in Python numpy
c, stats = H.hermefit(x,y,3,full=True)

print("\nResult...\n",c)

print("\nResult...\n",stats)

Đầu ra

X Co-ordinate...
  [-1.   -0.96 -0.92 -0.88 -0.84 -0.8  -0.76 -0.72 -0.68 -0.64 -0.6  -0.56
   -0.52 -0.48 -0.44 -0.4  -0.36 -0.32 -0.28 -0.24 -0.2  -0.16 -0.12 -0.08
   -0.04  0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4
    0.44  0.48  0.52  0.56  0.6   0.64  0.68  0.72  0.76  0.8   0.84  0.88
    0.92  0.96  1. ]

Y Co-ordinate...
  [-0.54079609 -1.17586687 -0.81506394  0.8047718  -1.21403444 -1.09247646
   -0.88942226 -0.62335081  0.83995142  0.29147171  2.45859847 -0.37545462
    0.90161986 -0.7125131  -0.82978518  0.25422338  0.62073702 -1.43305948
    0.96436296  0.03069738 -1.07349677  0.55233582  1.23286374  0.37330458
    0.27239629  0.46859691 -0.1074476   1.19279741  0.15844038 -0.20424904
   -1.41467693 -0.79396457 -2.38068246 -1.24121297 -0.7877071  -1.09171002
    1.0806185  -0.94389035 -2.16201749  0.21671724 -1.15596405  0.57090598
   -0.52496753 -0.20358065 -3.72121093  1.39868958 -0.02626711 -1.51582035
   -0.12223608 -0.58368042  0.69138128]

Result...
 [-0.54892802 4.71593168 -0.40858959 2.08689429]

Result...
 [array([51.90771673]), 4, array([1.41192215, 1.37967947, 0.31061966, 0.08047256]), 1.1324274851176597e-14]