Computer >> Máy Tính >  >> Lập trình >> C ++

Chương trình C ++ để thực hiện loại bỏ Gauss Jordan

Đây là một chương trình C ++ để thực hiện loại bỏ Gauss Jordan. Nó được sử dụng để phân tích hệ thống tuyến tính của phương trình đồng thời. Nó chủ yếu tập trung vào việc rút gọn hệ phương trình về dạng ma trận đường chéo bằng các phép toán hàng sao cho trực tiếp nghiệm được.

Thuật toán

Begin
   n = size of the input matrix
   To find the elements of the diagonal matrix:
   Make nested for loops j = 0 to n and i = 0 to n
      The element in the first row and the first column is made 1
      and then the remaining elements in the first column are made 0.
      Similarly, the elements in the second row and the second
      column is made 1, and then the other elements in the second
      column are reduced to 0 and so on.
   Print all calculated solution values.
End

Ví dụ

#include<iostream>
using namespace std;
int main() {
   int i,j,k,n; // declare variables and matrixes as
   input
   float a[10][10],b,x[10];
   printf("\nEnter the size of matrix: ");
   scanf("%d",&n);
   printf("\nEnter the elements of augmented matrix (rowwise):\ n");
   for(i=1; i<=n; i++) {
      for(j=1; j<=(n+1); j++) {
         cout << "A[" << i << ", " << j << " ]=";
         cin >> a[i][j];
      }
   }
   //to find the elements of diagonal matrix
   for(j=1; j<=n; j++) {
      for(i=1; i<=n; i++) {
         if(i!=j) {
            b=a[i][j]/a[j][j];
            for(k=1; k<=n+1; k++) { 
               a[i][k]=a[i][k]-b*a[j][k];
            }
         }
      }
   }
   cout<<"\nThe solution is:\n";
   for(i=1; i<=n; i++) {
      x[i]=a[i][n+1]/a[i][i];
      cout<<"x"<<i << "="<<x[i]<<" ";
   }
   return(0);
}

Đầu ra

Enter the size of matrix: 3
Enter the elements of augmented matrix row-wise:
A[1, 1 ]=1
A[1, 2 ]=2
A[1, 3 ]=-4
A[1, 4 ]=2
A[2, 1 ]=7
A[2, 2 ]=6
A[2, 3 ]=-2
A[2, 4 ]=-5
A[3, 1 ]=0
A[3, 2 ]=-3
A[3, 3 ]=-5
A[3, 4 ]=-8
The solution is:
x1=-2.89831 x2=2.5678 x3=0.059322