Phân loại hình ảnh là một phương pháp để phân loại hình ảnh thành các lớp danh mục tương ứng của chúng bằng cách sử dụng một số phương pháp như -
- Đào tạo một mạng nhỏ từ đầu
- Tinh chỉnh các lớp trên cùng của mô hình bằng VGG16
Ví dụ
#First, include following libraries: # Importing all necessary libraries from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras import backend as K #Here, the train_data_dir is the train dataset directory. validation_data_dir is the #directory for validation data. nb_train_samples is the total number train #samples. nb_validation_samples is the total number of validation samples. img_width, img_height = 224, 224 train_data_dir = 'v_data/train' validation_data_dir = 'v_data/test' nb_train_samples =400 nb_validation_samples = 100 epochs = 10 batch_size = 16 #checking the format of the image if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) model = Sequential() #Conv2D is the layer to convolve the image into multiple images model.add(Conv2D(32, (2, 2), input_shape=input_shape)) #Activation is the activation function. model.add(Activation('relu')) #MaxPooling2D is used to max pool the value from the given size #matrix and same is used for the next 2 layers. model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) #MaxPooling2D is used to max pool the value from the given size #matrix and same is used for the next 2 layers. model.add(Flatten()) #Dense is used to make this a fully connected model and is the #hidden layer. model.add(Dense(64)) model.add(Activation('relu')) #Dropout is used to avoid overfitting on the dataset. model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) #Compile function is used here that involve use of loss, optimizers #and metrics.here loss function used is binary_crossentropy, #optimizer used is rmsprop. model.compile(loss='binary_crossentropy',optimizer='rmsprop', metrics=['accuracy']) #ImageDataGenerator that rescales the image, applies shear in some #range, zooms the image #and does horizontal flipping with the #image. This ImageDataGenerator includes all possible #orientation #of the image. train_datagen = ImageDataGenerator(rescale=1. / 255,shear_range=0.2, zoom_range=0.2,horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) #train_datagen.flow_from_directory is the function that is used to #prepare data from the train_dataset directory Target_size specifies #the target size of the image. train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height),batch_size=batch_size,class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='binary') #fit_generator is used to fit the data into the model made above, #other factors used are steps_per_epochs tells us about the number #of times the model will execute for the training data. #epochs tells us the number of times model will be trained in forward #and backward pass. #validation_data is used to feed the validation/test data into the #model. #validation_steps denotes the number of validation/test samples. model.fit_generator(train_generator,steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size) #Save the model model.save_weights('ImgmodelKeras_saved.h5')