Tensorflow là một khuôn khổ học máy do Google cung cấp. Nó là một khung công tác mã nguồn mở được sử dụng cùng với Python để triển khai các thuật toán, ứng dụng học sâu và hơn thế nữa. Nó được sử dụng trong nghiên cứu và cho mục đích sản xuất.
Gói 'tensorflow' có thể được cài đặt trên Windows bằng dòng mã bên dưới -
pip install tensorflow
Tensor là một cấu trúc dữ liệu được sử dụng trong TensorFlow. Nó giúp kết nối các cạnh trong một sơ đồ luồng. Sơ đồ luồng này được gọi là 'Biểu đồ luồng dữ liệu'. Tensors không là gì ngoài mảng nhiều chiều hoặc một danh sách.
Keras được phát triển như một phần nghiên cứu cho dự án ONEIROS (Hệ điều hành Robot thông minh điện tử Neuro kết thúc mở). Keras là một API học sâu, được viết bằng Python. Đây là một API cấp cao có giao diện hiệu quả giúp giải quyết các vấn đề về máy học.
Nó chạy trên khuôn khổ Tensorflow. Nó được xây dựng để giúp thử nghiệm một cách nhanh chóng. Nó cung cấp các khối xây dựng và trừu tượng thiết yếu cần thiết trong việc phát triển và đóng gói các giải pháp học máy. Nó có khả năng mở rộng cao và đi kèm với các khả năng đa nền tảng. Điều này có nghĩa là Keras có thể chạy trên TPU hoặc các cụm GPU. Các mô hình Keras cũng có thể được xuất để chạy trong trình duyệt web hoặc điện thoại di động.
Keras đã có trong gói Tensorflow. Nó có thể được truy cập bằng cách sử dụng dòng mã dưới đây.
import tensorflow from tensorflow import keras
Chúng tôi đang sử dụng Google Colaboratory để chạy đoạn mã dưới đây. Google Colab hoặc Colaboratory giúp chạy mã Python qua trình duyệt và không yêu cầu cấu hình cũng như quyền truy cập miễn phí vào GPU (Đơn vị xử lý đồ họa). Colaboratory đã được xây dựng trên Jupyter Notebook. Sau đây là mã -
Ví dụ
print("The model is saved to HDF5 format") model.save('my_model.h5') print("The same model is recreated with same weights and optimizer") new_model = tf.keras.models.load_model('my_model.h5') print("The architecture of the model is observed") new_model.summary()
Tín dụng mã - https://www.tensorflow.org/tutorials/keras/save_and_load
Đầu ra
Giải thích
-
Mô hình mới được tạo có thể được lưu bằng chức năng "save".
-
Nó có thể được lưu cụ thể sang định dạng hdf5 bằng phần mở rộng ‘h5’.
-
Mô hình này được tải bằng cách sử dụng các trọng số và trình tối ưu hóa trước đó.
-
Thông tin chi tiết về mô hình mới được hiển thị trên bảng điều khiển bằng phương pháp "tóm tắt".