Thuật toán Schonhage-Strassen được sử dụng để nhân hai số. Thuật toán SchonhageStrassen là một thuật toán nhân nhanh tiệm cận cho các số nguyên lớn. Trên thực tế, thuật toán Schonhage-Strassen bắt đầu hoạt động tốt hơn các phương pháp cũ hơn như karatsuba và Toom-CooK cho các số vượt quá 2 2 15 đến 2 217 (10.000 đến 40.000 chữ số thập phân).
Thuật toán
Begin function noOfDigit( x) Declare a variable n and assign n = 0; while (x > 0) x = x /10 Increment n return n End Begin Algorithm for schonhageStrassenMultiplication: schonhageStrassenMultiplication(a, b, n, m) define an array linearConvolution[n + m - 1] for i = 0 to (n + m - 1)-1 linearConvolution[i] = 0; long p = a for i = 0 to m-1 a = p for j = 0 to n-1 linearConvolution[i + j] += (b mod 10) * (a mod 10); a /= 10 b /= 10 for i = (n + m - 2) to 0 Print linearConvolution[i] long product = 0 nextCarry = 0, base = 1 for i = 0 to (n + m - 1)-1 linearConvolution[i] += nextCarry; product = product + (base * (linearConvolution[i] % 10)); nextCarry = linearConvolution[i] / 10; base *= 10; Print the product of numbers. End
Mã mẫu
#include <iostream> using namespace std; int noOfDigit(long x) { int n = 0; while (x > 0) { x /= 10; n++; } return n; } void schonhageStrassenMultiplication(long a, long b, int n, int m) { int linearConvolution[n + m - 1]; for (int i = 0; i < (n + m - 1); i++) linearConvolution[i] = 0; long p = a; for (int i = 0; i < m; i++) { a = p; for (int j = 0; j < n; j++) { linearConvolution[i + j] += (b % 10) * (a % 10); a /= 10; } b /= 10; } cout << "The Linear Convolution is: ( "; for (int i = (n + m - 2); i >= 0; i--) { cout << linearConvolution[i] << " "; } cout << ")"; long product = 0; int nextCarry = 0, base = 1; for (int i = 0; i < n + m - 1; i++) { linearConvolution[i] += nextCarry; product = product + (base * (linearConvolution[i] % 10)); nextCarry = linearConvolution[i] / 10; base *= 10; } cout << "\nThe Product of the numbers is: " << product; } int main(int argc, char **argv) { cout << "Enter the numbers:"; long a, b; cin >> a >> b; int n = noOfDigit(a); int m = noOfDigit(b); schonhageStrassenMultiplication(a, b, n, m); }
Đầu ra
Enter the numbers:1234 5679 The Linear Convolution is: ( 5 16 34 61 63 55 36 ) The Product of the numbers is: 7007886