Computer >> Máy Tính >  >> Lập trình >> C ++

Chương trình C ++ để triển khai cây nhị phân có luồng

Cây nhị phân luồng là một cây nhị phân cung cấp cơ sở để duyệt cây theo một thứ tự cụ thể.

Nó làm cho việc truyền tải nhanh hơn và thực hiện điều đó mà không cần ngăn xếp và không cần đệ quy. Có hai loại cây nhị phân luồng.

Đơn luồng Mỗi nút được chuyển hướng sang trái hoặc phải có nghĩa là người tiền nhiệm hoặc người kế nhiệm theo thứ tự. Tại đây, tất cả các con trỏ null bên phải sẽ trỏ đến người kế nhiệm inorder hoặc tất cả các con trỏ null bên trái sẽ trỏ đến người tiền nhiệm inorder.

Luồng đôi Mỗi nút được chuyển hướng sang trái và phải có nghĩa là người tiền nhiệm và người kế nhiệm theo thứ tự. Ở đây, tất cả các con trỏ null bên phải sẽ trỏ đến người kế nhiệm inorder và tất cả các con trỏ null bên trái sẽ trỏ đến người tiền nhiệm inorder.

Đây là một chương trình C ++ để triển khai Cây nhị phân có luồng.

Hàm và mã giả

function insert ()

Insert node as root if tree is completely empty.
Otherwise, if newnode < current node then
   Go to left thread and set the newnode as left child.
else
   Go to right thread and set the newnode as right child.

hàm tìm kiếm ()

If search key < root then
   Go to left thread
else
   Go to right thread

chức năng xóa ()

Tìm Node và cha của nó. Để xóa nút, có ba trường hợp -

  • Nút có hai nút con.
  • Có một đứa con duy nhất.
  • Có con duy nhất.

Ví dụ

#include <iostream>
#include <cstdlib>
#define MAX_VALUE 65536
using namespace std;
class N { //node declaration
   public:
      int k;
   N *l, *r;
   bool leftTh, rightTh;
};
class ThreadedBinaryTree {
   private:
   N *root;
   public:
   ThreadedBinaryTree() { //constructor to initialize the variables
      root= new N();
      root->r= root->l= root;
      root->leftTh = true;
      root->k = MAX_VALUE;
   }
   void makeEmpty() { //clear tree
      root= new N();
      root->r = root->l = root;
      root->leftTh = true;
      root->k = MAX_VALUE;
   }
   void insert(int key) {
      N *p = root;
      for (;;) {
         if (p->k< key) { / /move to right thread
            if (p->rightTh)
               break;
            p = p->r;
         } else if (p->k > key) { // move to left thread
            if (p->leftTh)
               break;
            p = p->l;
         } else {
            return;
         }
      }
      N *temp = new N();
      temp->k = key;
      temp->rightTh= temp->leftTh= true;
      if (p->k < key) {
         temp->r = p->r;
         temp->l= p;
         p->r = temp;
         p->rightTh= false;
      } else {
         temp->r = p;
         temp->l = p->l;
         p->l = temp;
         p->leftTh = false;
      }
   }
   bool search(int key) {
      N *temp = root->l;
      for (;;) {
      if (temp->k < key) { //search in left thread
      if (temp->rightTh)
            return false;
         temp = temp->r;
      } else if (temp->k > key) { //search in right thread
         if (temp->leftTh)
            return false;
         temp = temp->l;
      } else {
         return true;
      }
   }
}
void Delete(int key) {
   N *dest = root->l, *p = root;
   for (;;) { //find Node and its parent.
      if (dest->k < key) {
         if (dest->rightTh)
            return;
         p = dest;
         dest = dest->r;
      } else if (dest->k > key) {
         if (dest->leftTh)
            return;
         p = dest;
         dest = dest->l;
      } else {
         break;
      }
   }
   N *target = dest;
   if (!dest->rightTh && !dest->leftTh) {
      p = dest;  //has two children
      target = dest->l;   //largest node at left child
      while (!target->rightTh) {
         p = target;
         target = target->r;
      }
      dest->k= target->k; //replace mode
   }
   if (p->k >= target->k) { //only left child
      if (target->rightTh && target->leftTh) {
         p->l = target->l;
         p->leftTh = true;
      } else if (target->rightTh) {
         N*largest = target->l;
         while (!largest->rightTh) {
            largest = largest->r;
         }
         largest->r = p;
         p->l= target->l;
      } else {
         N *smallest = target->r;
         while (!smallest->leftTh) {
            smallest = smallest->l;
         }
         smallest->l = target->l;
         p->l = target->r;
      }
   } else {//only right child
      if (target->rightTh && target->leftTh) {
         p->r= target->r;
         p->rightTh = true;
      } else if (target->rightTh) {
         N *largest = target->l;
         while (!largest->rightTh) {
            largest = largest->r;
         }
         largest->r= target->r;
         p->r = target->l;
      } else {
         N *smallest = target->r;
         while (!smallest->leftTh) {
            smallest = smallest->l;
         }
         smallest->l= p;
         p->r= target->r;
      }
   }
}
void displayTree() { //print the tree
   N *temp = root, *p;
   for (;;) {
      p = temp;
      temp = temp->r;
      if (!p->rightTh) {
         while (!temp->leftTh) {
            temp = temp->l;
         }
      }
      if (temp == root)
         break;
      cout<<temp->k<<" ";
   }
   cout<<endl;
}
};
int main() {
   ThreadedBinaryTree tbt;
   cout<<"ThreadedBinaryTree\n";
   char ch;
   int c, v;  
   while(1) {
      cout<<"1. Insert "<<endl;
      cout<<"2. Delete"<<endl;
      cout<<"3. Search"<<endl;
      cout<<"4. Clear"<<endl;
      cout<<"5. Display"<<endl;
      cout<<"6. Exit"<<endl;
      cout<<"Enter Your Choice: ";
      cin>>c;
      //perform switch operation
      switch (c) {
         case 1 :
            cout<<"Enter integer element to insert: ";
            cin>>v;
            tbt.insert(v);
            break;
         case 2 :
            cout<<"Enter integer element to delete: ";
            cin>>v;
            tbt.Delete(v);
            break;
         case 3 :
            cout<<"Enter integer element to search: ";
            cin>>v;
            if (tbt.search(v) == true)
               cout<<"Element "<<v<<" found in the tree"<<endl;
            else
               cout<<"Element "<<v<<" not found in the tree"<<endl;
            break;
         case 4 :
            cout<<"\nTree Cleared\n";
            tbt.makeEmpty();
            break;
         case 5:
            cout<<"Display tree: \n ";
            tbt.displayTree();
            break;
         case 6:
            exit(1);
         default:
            cout<<"\nInvalid type! \n";
      }
   }
   cout<<"\n";
   return 0;
}

Đầu ra

ThreadedBinaryTree
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 1
Enter integer element to insert: 10
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 1
Enter integer element to insert: 7
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 1
Enter integer element to insert: 6
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 1
Enter integer element to insert: 4
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 1
Enter integer element to insert: 5
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 1
Enter integer element to insert: 3
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 5
Display tree
3 4 5 6 7 10
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 3
Enter integer element to search: 7
Element 7 found in the tree
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 3
Enter integer element to search: 1
Element 1 not found in the tree
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 2
Enter integer element to delete: 3
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 5
Display tree
4 5 6 7 10
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 4

Tree Cleared
1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 5
Display tree

1. Insert
2. Delete
3. Search
4. Clear
5. Display
6. Exit
Enter Your Choice: 6