Giả sử chúng ta có một chuỗi s là biểu thức S. Chúng ta phải đánh giá biểu thức S đó và kết quả trả về là số nguyên. Như chúng ta biết rằng biểu thức s là một biểu thức hoặc là một số hoặc biểu thức đệ quy được bao bọc trong dấu ngoặc đơn như (+ (- 3 2) (* 3 3)), cho biết (3 - 2) + (3 * 3) =10. Các toán tử hợp lệ ở đây là +, -, * và /.
Vì vậy, nếu đầu vào là s ="(- (+ 3 2) 2)", thì đầu ra sẽ là 3, là ((3 + 2) - 2) =3.
Để giải quyết vấn đề này, chúng tôi sẽ làm theo các bước sau -
-
stack:=một ngăn xếp mới
-
bỏ dấu ngoặc mở và đóng ngoặc đơn của s
-
a:=split s sử dụng dấu cách và tạo danh sách các phân vùng
-
đối với mỗi i theo thứ tự ngược lại, hãy thực hiện
-
nếu kích thước của i> 1, thì
-
nếu tôi [0] giống với "-" thì
-
đẩy tôi dưới dạng số nguyên vào ngăn xếp
-
chuyển sang lần lặp tiếp theo
-
-
nếu không,
-
đẩy tôi dưới dạng số nguyên vào ngăn xếp
-
-
-
ngược lại khi tôi là một chữ số thì
-
đẩy tôi dưới dạng số nguyên vào ngăn xếp
-
-
nếu không,
-
nếu kích thước của ngăn xếp> =2, thì
-
num1:=pop từ ngăn xếp
-
num2:=pop from stack
-
nếu tôi giống với "+", thì
-
thực hiện num1 + num2 và đẩy vào ngăn xếp
-
-
ngược lại khi tôi giống với "-" thì
-
thực hiện num1 - num2 và đẩy vào ngăn xếp
-
-
ngược lại khi tôi giống với "*" thì
-
thực hiện num1 * num2 và đẩy vào ngăn xếp
-
-
nếu không,
-
thực hiện num1 / num2 và đẩy vào ngăn xếp
-
-
-
-
-
trả về phần tử trên cùng từ ngăn xếp và xóa phần tử trên cùng
Ví dụ
Hãy cùng chúng tôi xem cách triển khai sau để hiểu rõ hơn -
class Solution: def solve(self, s): stack = list() s = s.replace("(", "") s = s.replace(")", "") a = s.split() for i in a[::-1]: if len(i) > 1: if i[0] == "-": stack.append(int(i)) continue else: stack.append(int(i)) elif i.isdigit(): stack.append(int(i)) else: if len(stack) >= 2: num1 = stack.pop() num2 = stack.pop() if i == "+": stack.append(int(num1 + num2)) elif i == "-": stack.append(int(num1 - num2)) elif i == "*": stack.append(int(num1 * num2)) else: stack.append(int(num1 / num2)) return stack.pop() ob = Solution() s = "(- (+ 3 2) 2)" print(ob.solve(s))
Đầu vào
s = "(- (+ 3 2) 2)"
Đầu ra
3