Computer >> Máy Tính >  >> Lập trình >> Javascript

Hoàn thành lớp đồ thị trong Javascript


Các hàm đã được nhận xét trong mã này. Bạn cũng có thể chuyển sang những cái đó. Chúng tôi cũng đã di chuyển các lớp Queue, Stack và PriorityQueue trong các mô-đun khác nhau có thể được nhập bằng cách sử dụng câu lệnh nhập hoặc sử dụng lệnh gọi request. Đây là cách triển khai hoàn chỉnh của lớp Graph -

Ví dụ

const Queue = require("./Queue");
const Stack = require("./Stack");
const PriorityQueue = require("./PriorityQueue");

class Graph {
   constructor() {
      this.edges = {};
      this.nodes = [];
   }

   addNode(node) {
      this.nodes.push(node);
      this.edges[node] = [];
   }

   addEdge(node1, node2, weight = 1) {
      this.edges[node1].push({ node: node2, weight: weight });
      this.edges[node2].push({ node: node1, weight: weight });
   }

   addDirectedEdge(node1, node2, weight = 1) {
      this.edges[node1].push({ node: node2, weight: weight });
   }

   // addEdge(node1, node2) {
      // this.edges[node1].push(node2);
      // this.edges[node2].push(node1);
   // }

   // addDirectedEdge(node1, node2) {
      // this.edges[node1].push(node2);
   // }

   display() {
      let graph = "";
      this.nodes.forEach(node => {
         graph += node + "->" + this.edges[node].map(n => n.node).join(", ") + "\n";
      });
      console.log(graph);
   }

   BFS(node) {
      let q = new Queue(this.nodes.length);
      let explored = new Set();
      q.enqueue(node);
      explored.add(node);
      while (!q.isEmpty()) {
         let t = q.dequeue();
         console.log(t);
         this.edges[t].filter(n => !explored.has(n)).forEach(n => {
            explored.add(n);
            q.enqueue(n);
         });
      }
   }

   DFS(node) {
      // Create a Stack and add our initial node in it
      let s = new Stack(this.nodes.length);
      let explored = new Set();
      s.push(node);

      // Mark the first node as explored
      explored.add(node);

      // We'll continue till our Stack gets empty
      while (!s.isEmpty()) {
         let t = s.pop();

         // Log every element that comes out of the Stack
         console.log(t);

         // 1. In the edges object, we search for nodes this node is
         // directly connected to.
         // 2. We filter out the nodes that have already been explored.
         // 3. Then we mark each unexplored node as explored and push it
         // to the Stack.
         this.edges[t].filter(n => !explored.has(n)).forEach(n => {
            explored.add(n);
            s.push(n);
         });
      }
   }

   topologicalSortHelper(node, explored, s) {
      explored.add(node);
      this.edges[node].forEach(n => {
         if (!explored.has(n)) {
            this.topologicalSortHelper(n, explored, s);
         }
      });
      s.push(node);
   }

   topologicalSort() {
      // Create a Stack and add our initial node in it
      let s = new Stack(this.nodes.length);
      let explored = new Set();
      this.nodes.forEach(node => {
         if (!explored.has(node)) {
            this.topologicalSortHelper(node, explored, s);
         }
      });
      while (!s.isEmpty()) {
         console.log(s.pop());
      }
   }

   BFSShortestPath(n1, n2) {
      let q = new Queue(this.nodes.length);
      let explored = new Set();
      let distances = { n1: 0 };

      q.enqueue(n1);
      explored.add(n1);

      while (!q.isEmpty()) {
         let t = q.dequeue();
         this.edges[t].filter(n => !explored.has(n)).forEach(n => {
            explored.add(n);
            distances[n] = distances[t] == undefined ? 1 : distances[t] + 1;
            q.enqueue(n);
         });
      }
      return distances[n2];
   }

   primsMST() {
      // Initialize graph that'll contain the MST
      const MST = new Graph();
      if (this.nodes.length === 0) {
         return MST;
      }

      // Select first node as starting node
      let s = this.nodes[0];

      // Create a Priority Queue and explored set
      let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length);
      let explored = new Set();

      explored.add(s);
      MST.addNode(s);

      // Add all edges from this starting node to the PQ taking weights as priority
      this.edges[s].forEach(edge => {
         edgeQueue.enqueue([s, edge.node], edge.weight);
      });

      // Take the smallest edge and add that to the new graph
      let currentMinEdge = edgeQueue.dequeue();
      while (!edgeQueue.isEmpty()) {
         // COntinue removing edges till we get an edge with an unexplored node
         while (!edgeQueue.isEmpty() && explored.has(currentMinEdge.data[1])) {
            currentMinEdge = edgeQueue.dequeue();
         }
         let nextNode = currentMinEdge.data[1];

         // Check again as queue might get empty without giving back unexplored element
         if (!explored.has(nextNode)) {
            MST.addNode(nextNode);
            MST.addEdge(currentMinEdge.data[0], nextNode, currentMinEdge.priority);
            // Again add all edges to the PQ
            this.edges[nextNode].forEach(edge => {
               edgeQueue.enqueue([nextNode, edge.node], edge.weight);
            });

            // Mark this node as explored explored.add(nextNode);
            s = nextNode;
         }
      }
      return MST;
   }

   kruskalsMST() {
      // Initialize graph that'll contain the MST
      const MST = new Graph();
      this.nodes.forEach(node => MST.addNode(node));
      if (this.nodes.length === 0) {
         return MST;
      }

      // Create a Priority Queue
      let edgeQueue = new PriorityQueue(this.nodes.length * this.nodes.length);

      // Add all edges to the Queue:
      for (let node in this.edges) {
         this.edges[node].forEach(edge => {
            edgeQueue.enqueue([node, edge.node], edge.weight);
         });
      }

      let uf = new UnionFind(this.nodes);
      // Loop until either we explore all nodes or queue is empty
      while (!edgeQueue.isEmpty()) {
         // Get the edge data using destructuring
         let nextEdge = edgeQueue.dequeue();
         let nodes = nextEdge.data;
         let weight = nextEdge.priority;
         if (!uf.connected(nodes[0], nodes[1])) {
            MST.addEdge(nodes[0], nodes[1], weight);
            uf.union(nodes[0], nodes[1]);
         }
      }
      return MST;
   }

   djikstraAlgorithm(startNode) {
      let distances = {};
      // Stores the reference to previous nodes
      let prev = {};
      let pq = new PriorityQueue(this.nodes.length * this.nodes.length);

      // Set distances to all nodes to be infinite except startNode
      distances[startNode] = 0;
      pq.enqueue(startNode, 0);
      this.nodes.forEach(node => {
         if (node !== startNode) distances[node] = Infinity;
         prev[node] = null;
      });

      while (!pq.isEmpty()) {
         let minNode = pq.dequeue();
         let currNode = minNode.data;
         let weight = minNode.priority;

         this.edges[currNode].forEach(neighbor => {
            let alt = distances[currNode] + neighbor.weight;
            if (alt < distances[neighbor.node]) {
               distances[neighbor.node] = alt;
               prev[neighbor.node] = currNode;
               pq.enqueue(neighbor.node, distances[neighbor.node]);
            }
         });
      }
      return distances;
   }

   floydWarshallAlgorithm() {
      let dist = {};
      for (let i = 0; i < this.nodes.length; i++) {
         dist[this.nodes[i]] = {};
         // For existing edges assign the dist to be same as weight
         this.edges[this.nodes[i]].forEach(
            e => (dist[this.nodes[i]][e.node] = e.weight)
         );

         this.nodes.forEach(n => {
            // For all other nodes assign it to infinity
            if (dist[this.nodes[i]][n] == undefined)
            dist[this.nodes[i]][n] = Infinity;
            // For self edge assign dist to be 0
            if (this.nodes[i] === n) dist[this.nodes[i]][n] = 0;
         });
      }

      this.nodes.forEach(i => {
         this.nodes.forEach(j => {
            this.nodes.forEach(k => {
               // Check if going from i to k then from k to j is better
               // than directly going from i to j. If yes then update
               // i to j value to the new value
               if (dist[i][k] + dist[k][j] < dist[i][j])
                  dist[i][j] = dist[i][k] + dist[k][j];
            });
         });
      });
      return dist;
   }
}

class UnionFind {
   constructor(elements) {
      // Number of disconnected components
      this.count = elements.length;

      // Keep Track of connected components
      this.parent = {};

      // Initialize the data structure such that all
      // elements have themselves as parents
      elements.forEach(e => (this.parent[e] = e));
   }

   union(a, b) {
      let rootA = this.find(a);
      let rootB = this.find(b);

      // Roots are same so these are already connected.
      if (rootA === rootB) return;

      // Always make the element with smaller root the parent.
      if (rootA < rootB) {
         if (this.parent[b] != b) this.union(this.parent[b], a);
         this.parent[b] = this.parent[a];
      } else {
         if (this.parent[a] != a) this.union(this.parent[a], b);
         this.parent[a] = this.parent[b];
      }
   }

   // Returns final parent of a node
   find(a) {
      while (this.parent[a] !== a) {
         a = this.parent[a];
      }
      return a;
   }

   // Checks connectivity of the 2 nodes
   connected(a, b) {
      return this.find(a) === this.find(b);
   }
}