Computer >> Máy Tính >  >> Lập trình >> C ++

Chương trình tìm GCD hoặc HCF của hai số bằng Quy trình trung học trong C ++

Trong hướng dẫn này, chúng ta sẽ thảo luận về một chương trình để tìm GCD hoặc HCF của hai số bằng cách sử dụng Quy trình cấp trung học cơ sở.

Đối với điều này, chúng tôi sẽ được cung cấp với hai con số. Nhiệm vụ của chúng ta là tìm GCD (ước chung lớn nhất) hoặc HCF (ước chung cao nhất) cho các giá trị đã cho.

Ví dụ

#include <bits/stdc++.h>
#define MAXFACTORS 1024
using namespace std;
//structure to store factorization
typedef struct{
   int size;
   int factor[MAXFACTORS + 1];
   int exponent[MAXFACTORS + 1];
} FACTORIZATION;
void FindFactorization(int x, FACTORIZATION* factorization){
   int i, j = 1;
   int n = x, c = 0;
   int k = 1;
   factorization->factor[0] = 1;
   factorization->exponent[0] = 1;
   for (i = 2; i <= n; i++) {
      c = 0;
      while (n % i == 0) {
         c++;
         n = n / i;
      }
      if (c > 0) {
         factorization->exponent[k] = c;
         factorization->factor[k] = i;
         k++;
      }
   }
   factorization->size = k - 1;
}
//printing the factors
void DisplayFactorization(int x, FACTORIZATION factorization){
   int i;
   cout << "Prime factor of << x << = ";
   for (i = 0; i <= factorization.size; i++) {
      cout << factorization.factor[i];
      if (factorization.exponent[i] > 1)
         cout << "^" << factorization.exponent[i];
      if (i < factorization.size)
         cout << "*";
      else
         cout << "\n";
   }
}
//gcd using Middle School procedure
int gcdMiddleSchoolProcedure(int m, int n){
   FACTORIZATION mFactorization, nFactorization;
   int r, mi, ni, i, k, x = 1, j;
   FindFactorization(m, &mFactorization);
   DisplayFactorization(m, mFactorization);
   FindFactorization(n, &nFactorization);
   DisplayFactorization(n, nFactorization);
   int min;
   i = 1;
   j = 1;
   while (i <= mFactorization.size && j <= nFactorization.size) {
      if (mFactorization.factor[i] < nFactorization.factor[j])
         i++;
      else if (nFactorization.factor[j] < mFactorization.factor[i])
         j++;
      else{
         min = mFactorization.exponent[i] > nFactorization.exponent[j] ? nFactorization.exponent[j] : mFactorization.exponent[i];
         x = x * mFactorization.factor[i] * min;
         i++;
         j++;
      }
   }
   return x;
}
int main(){
   int m = 10, n = 15;
   cout << "GCD(" << m << ", " << n << ") = " << gcdMiddleSchoolProcedure(m, n);
   return (0);
}

Đầu ra

GCD(10, 15) = Prime factor of << x << = 1*2*5
Prime factor of << x << = 1*3*5
5